
RECITATION 6
COP 3363
SPRING 2020

2-21-2020

FUNCTIONS

▸ Two primary roles: abstraction & reusability

▸ C++ format: <return type> <function name>(parameter list)

▸ Utilize all of the concepts (and more) which have been
introduced thus far

▸ variables, i/o, selection, repetition, basic math operations

▸ (Typically) accepts some input and (typically) returns some
output

2-21-2020

ATMS

▸ Many different real world activities follow a functional
pattern

▸ Using an ATM

▸ input: a debit card, a pin number, a $ amount

▸ output: currency which is equivalent to that $ amount

▸ C++ format: dollars atm_withdrawl(card, pin, amount)

2-21-2020

ABSTRACTION

▸ Makes code easier to read, distribute, and reuse

▸ A core concept behind function usage is that a user (programmer) can
trust the result of a function’s execution without knowing the steps of
the execution

▸ ex. sin(x), cos(x), setprecision(2)

▸ Fewer and cleaner lines of code in your main routine make your source
code easier to comprehend

▸ Imagine you have a 10 line menu which has to print 5 times in your
program. Is it more sensible to dedicate 50 or 5 lines to that in your
main routine?

2-21-2020

REUSABILITY

▸ Programs typically involve lots of repetition. How to make
that easier?

▸ Loops and functions

▸ Loops make repetition easier at a particular point in
your program

▸ Functions make repetition easier when it takes place
in different parts of your program.

2-21-2020

RETURN VS PRINTING

▸ Returning data from a function and printing to the screen (cout) from within
a function are not the same thing

▸ Using cout in a function simply prints data to the screen just like in main()

▸ Returning data from a function does not display on screen

▸ ex. double x; x=sin(3); cout << x;

▸ x stores the value of sin(3) after the second statement, but you don’t
see it on screen until the third

▸ atm example: returning - getting the physical currency, printing -
seeing the withdraw amt print on the screen

2-21-2020

DIFF

▸ Format: diff [flags] <original file> <newfile>

▸ Compares 2 files or directories and prints lines where there is a
difference

▸ Useful flags

▸ b: Treats groups of spaces as one

▸ i: Ignores case

▸ r: Includes directories in comparison

▸ w: Ignores all spaces and tabs

2-21-2020

GREP

▸ Searches files for a particular pattern. The pattern can be a word, a string
enclosed in single quotes, or a regular expression.

▸ grep int *.c (find all occurences of the pattern ‘int’ in all files with a .c
extenstion)

▸ grep ‘m.*n’ myfile (the . matches a single character, the .* matches any number
of characters; this finds anything starting with an m and ending with an n)

▸ Useful flags:

▸ i: ignore case

▸ n: display the line numbers

▸ l: display only names of files and not actual lines

2-21-2020

TAR

▸ Create and extract file archives

▸ tar [flags] <archive name> <files>

▸ Useful flags:

▸ c: insert files into a tar file

▸ v: output the name of each file as it is inserted into or

▸ f: use the name of the tar file that is specified

▸ x: extract the files from a tar file

2-21-2020

WILDCARDS * ? []

▸ ? matches any single character in a filename

▸ b?t will match bit, bot, bat. It will not match bt or boot

▸ * matches any number of characters in a
filename

▸ con* will match con, condor, constant.exe

▸ *.c will match all files that end in .c

▸ [] will match any one of the characters in the brackets.

▸ A hyphen “-” can be used to match any of a range of consecutive characters.

▸ [bhr]at will match bat, hat and rat

▸ chap[5-8].c will match chap5.c, chap6.c, chap7.c and chap8.c

