
Automating Software Traceability Link Recovery and Maintenance using Word 
Embeddings within a Shallow Neural Network


Marlan McInnes-Taylor, Faculty Mentor: Dr. Chris Mills

Florida State University Department of Computer Science

Abstract

In addition to code, software systems contain a 
multitude of files documenting features, known 
issues, legal requirements, etc. Software 
traceability is the ability to link related documents 
from these various sets through a process called 
traceability link recovery. While previous research 
has shown that established software traceability 
improves the quality of projects and makes them 
easier to maintain, establishing software 
traceability is often a manual, arduous, and error 
prone task. This research explores automating the 
process of software traceability link recovery using 
established techniques in machine learning. The 
results demonstrate that even with minimally 
tuned hyperparameters a shallow neural network 
can effectively predict which text-based artifacts 
within a software system are related to one 
another.

Introduction

Materials and Methods

The training and test data were comprised of six datasets 
commonly used to validate approaches for automating 
traceability link recovery: Albergate, eAnci, eTour, iTrust, 
MODIS, and SMOS. The table below shows a breakdown of 
the data by project. Each of the projects involved in our 
evaluation is written in either Java or C++. The code used 
for parsing and cleaning the software artifacts is written in 
Python. TensorFlow 2.0 was used to train and evaluate the 
neural networks.

Results

Conclusions

Future Work

References

Based on the results, it is clear that word 
embeddings used within a shallow network can 
successfully perform metadocument classification 
for the systems under study. Note that here we 
report recall, precision, and F1 score in addition to 
accuracy. This is because accuracy can be 
artificially inflated in imbalanced data. For 
example, in a dataset of 100 samples with 1 
“false” label, a machine that always predicts “true” 
has high accuracy, but it's low recall illustrates the 
machines impracticality. These results act as a 
proof on concept, and first step towards creating a 
classifier which is useful outside of a purely 
research context. 

Our future work will focus on improving this model 
by further optimizing its hyperparameters and 
evaluating the model's generalizability. Initially, we 
plan to perform a series of experiments to identify 
the minimum data requirements using supportive 
techniques such as Active Learning and cross 
training. Furthermore, we will investigate how 
deepening the model’s architecture impacts 
performance in terms of our results metrics.

Previous studies have shown that access to 
information explaining relationships between 
artifacts in a system leads to higher quality 
software and lower bug counts. This is largely 
credited to such information improving common 
software engineering tasks such as: 

• program comprehension

• concept and bug localization

• defect prediction


The acquisition of traceability information is 
difficult and typically an afterthought during 
system construction. Consequently, hundreds or 
thousands of man hours can be spent after initial 
development manually inferring relationships 
between artifacts that are constantly in flux as the 
system changes during development and 
maintenance.


To address this situation, previous studies have 
attempted to either completely or partially 
automate the process of establishing traceability 
links between system components. In this work, 
we continue that research agenda by using neural 
networks to model potential links between text-
based software artifacts and predict which are 
valid (i.e. two related documents) and which are 
invalid (i.e. two unrelated documents). 

System Loss Accuracy Recall Precision F1Score

Albergate 0.28 0.95 0.91 0.98 0.94

eAnci 0.11 0.96 0.94 0.98 0.96

eTour 0.13 0.96 0.93 0.99 0.96

iTrust 0.17 0.97 0.95 0.99 0.97

MODIS 0.29 0.93 0.94 0.92 0.93

SMOS 0.33 0.87 0.75 0.98 0.85

DATASETS USED IN THE EVALUATION

System Total Artifacts Invalid Links Valid Links Artifact Types *

Albergate 72 882 53 (5.67%) UC, CC

eAnci 194 7091 554 (7.24%) UC, CC

eTour 174 6363 365 (5.43%) UC, CC

iTrust 80 1493 58 (3.74%) UC, CC

MODIS 68 890 41 (4.40%) HighR, LowR

SMOS 167 3512 1044 (22.91%) UC, CC
* HighR = High-level Requirements, LowR = Low-level Requirements, UC = Use Cases, CC = Code 

Classes

Please refer to submitted paper.

Preprocessing

Document text was first tokenized then cleaned by removing stopwords, whitespace, punctuation, and 
purely numeric tokens. A Porter Stemmer was applied to all remaining terms. Once cleaned, we created 
metadocuments by concatenating all possible (order invariant) pairs of documents such that the documents 
in a pair belong to different sets of artifacts. Each metadocument contains data from a unique pair of 
potentially related documents in the system, and was labeled as either a valid link between two related 
documents or an invalid link between two unrelated ones as specified in each dataset's oracle file. As 
shown in the Datasets Table, class imbalance was present in all datasets. To mitigate negative effects of 
class imbalance on model performance, each dataset was balanced using the Synthetic Minority Over-
sampling Technique (SMOTE), resulting in an equal number of valid and invalid links within each dataset.


Training and Validation

A shallow Tensorflow model was implemented to classify unlabeled metadocuments as valid or invalid. The 
model's first two layers perform text vectorization and transform the vectors using word embeddings. These 
vectors are then pooled before being passed into a 16 node dense layer followed by the output layer. We 
performed 50 trials of 10 fold cross validation with 15 epochs per fold on each dataset. Shuffled stratification 
was used to sample the dataset in each fold to minimize selection bias. 

Summary of Datasets
Total Artifacts 755

Potential Links 22346

Valid Links 9.46%

Invalid Links 90.54%


